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1.  Introduction 

In many economic applications, the optimal control model adopted is impulse 

control, also called the (S,s) model or buffer stock model.  Impulse control has been 

applied to problems of capital accumulation, labor demand, price setting and inflation, 

the demand for money and international reserves, inventories, and many others. The 

essence of this model is lumpy control of the state variable, usually at its boundaries. For 

instance, when the state variable is "too high" or "too low" given some payoff function, it 

is controlled to some intermediate level.  

Impulse control assumes the drift of the state variable between controls is 

exogenous. However, it is often the case that the drift is in fact an endogenous variable 

that the decision maker can control. For example, by adjusting its output price, a firm can 

control the rate of expansion of output and thus capital and labor growth.  A household 

can control its rate of expenditures and not just the level where an asset reallocation is 

required.  A central bank can use monetary or exchange-rate policy to influence the rate 

of accumulation of international reserves. 

In this paper we introduce another model of optimal control -- a drift control 

model -- and present an economic application to the demand for foreign reserves. The 

new model extends and nests the buffer stock model. The decision maker, whether it is a 

firm, household, or a central bank, can control both the boundaries of the state variable 

and its drift. Given this policy, we present an innovative mathematical tool for analyzing 

the drift control. This analytical tool, based on martingale stopping theory, is used to 

derive analytic expressions of the payoff functions. Control variables such as drifts and 
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boundaries that minimize the payoff can be straightforwardly found using these payoff 

functions.1       

We present the model of drift control in the context of foreign reserve holdings. 

To the best of our knowledge, this is the first application of a drift control methodology 

to an economic problem.  To date, the most popular model for explaining reserve 

holdings has been the buffer stock model, illustrated in Figure 1.2  In the buffer stock 

model, reserves are initially set at their target level by the reserve authority.  They decline 

smoothly until they reach an exogenous trigger (usually zero), at which time the authority 

immediately restocks reserves. The model postulates that the authority chooses a target 

level of reserves to minimize its total expected costs. Total costs consist of the 

opportunity cost of holding reserves and the adjustment cost incurred at the time of 

restocking.  

While the buffer stock model is simple and straightforward, it has some 

shortcomings.  First, the shark-tooth pattern implied by the buffer stock model-- of a 

gradual stochastic decline in reserves followed by an abrupt increase at the time of 

restocking—is not evident in the data.  Figure 2 illustrates the reserve pattern for twelve 

countries over the 1985-2001 period.  We find a reserve path of gradual declines and 

increases that are bounded from below and above. Observe that reserves are not restocked 

                                                 
1 Recent examples of impulse control are Altman (1999) and Bar-Ilan et al. (2004), while 
examples of drift control are Perry (1997) and Ata et al. (2005).  
 
2 For examples of buffer stock models, see Heller (1966), Heller and Khan (1978), 
Frenkel and Jovanovic (1981), Edwards (1983, 1985), Lizondo and Mathieson (1987), 
and Flood and Marion (2002).  For examples of models that stress a precautionary 
demand for reserves, see Van Wijnbergen (1990), Ben-Bassat and Gottlieb (1992) and 
Aizenman and Marion (2004).   
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immediately after they hit a lower bound. In fact, we find that it takes about twice as long 

for reserves to accumulate from trough to peak as to decline from peak to trough.   

A second shortcoming of the buffer stock (BS) model is that the policy required 

of the reserve authority to generate the shark-tooth pattern is not the policy that countries 

generally adopt.  The BS model literally describes a situation in which an injection of 

reserves, perhaps from some external source like the IMF, immediately restores reserves 

to their target level when reserves hit a lower bound.   This description may be 

appropriate for a household that transfers funds from a savings account to a checking 

account when its checking account approaches a lower bound.  It is not the usual 

response of a reserve authority to a low level of reserves. A more important and common 

reaction is to change monetary or exchange-rate policy.  The policy change alters the 

reserve drift.  It alters financial and current account flows that gradually increase the level 

of reserves.  The reserve authority does not restock reserves to their target level in the 

abrupt manner characterized by the BS model.  

The BS model also implies an unchanged policy environment before and after 

restocking. A policy setting may lead to a gradual decline in reserves. (Speculation and 

other shocks may cause sudden changes in reserves around this negative trend.)  When 

reserves reach their lower bound and are restocked at their optimal level, they again start 

to decline because the same policy environment persists. In practice, it is much more 

common for policy to change when reserves hit their lower bound or when they reach an 

upper bound.   Indeed, it is this policy change that reverses the direction of the drift in 

reserves. 
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 In this paper, we develop an alternative model of international reserve holdings, 

the drift control model. We argue that is more consistent with the dynamic behavior of 

reserves and the actual tools used by reserve authorities.3 Its key feature is that the 

reserve authority controls the average rates of reserve accumulation and depletion (the 

upward and downward drifts).  It does so by its choice of exchange-rate policy or 

monetary/fiscal policies.  Reserves can still change stochastically as upward and 

downward Brownian motions, but their mean rates of change are under the control of the 

authority.  

The reserve authority also decides when to apply a policy adjustment to change 

the drift in reserves.  It sets the lower bound on reserves that will trigger an increase in 

the drift and the upper bound that will trigger a reduction in the drift.  Using our model, 

we show how to obtain an explicit solution for the expected total discounted cost of 

managing reserves.  We then minimize this cost and derive the steady-state distribution of 

reserves and their mean level.4  

The drift control model substantially extends the BS model by allowing the 

reserve authority to choose four policy variables instead of only one.  In addition to 

controlling the upper bound for reserves as in the BS model, the reserve authority 

optimally chooses the value of the lower drift rather than having it fixed at some negative 

value; it optimally sets the value of the upward drift rather than having it fixed infinitely 

                                                 
3 The drift control model also uses a more fully-specified demand for reserves and a 
richer stochastic structure than simple models of precautionary demand for reserves.  See 
Aizenman and Marion (2004) for a precautionary demand model. 
 
4 For additional technical references on drift control, see the appendix. 
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high; and it optimally selects the lower bound on reserves rather than having it 

exogenously given.  The BS model is just a constrained version of drift control. 

The drift control model predicts that some countries might allow their reserves to 

build up over a long period of time. This strategy is optimal when the cost of holding 

reserves is low but the cost of adjusting policy is high.  In this case there may be little or 

no intervention to adjust downward the drift in reserves.  Drift control also allows the 

reserve authority to put its international reserves policy on “automatic pilot”.  By 

choosing a small, positive drift rate, the authority can keep reserves relatively constant, or 

rising slowly on average, and thus reduce the need for policy adjustments.  As such, the 

reserves policy will not interfere with other goals the authority might pursue. 

The structure of the paper is as follows. Section 2 motivates the drift control 

model by presenting some empirical evidence on country reserve holdings.  Section 3 

describes the drift control model.  Section 4 provides explicit solutions for the expected 

total cost of managing reserves, the stationary distribution of reserves, and their mean 

level.  Section 5 finds the parameters that minimize the cost of managing reserves.  It 

shows how the drift levels, the triggers, and the average level of reserve holdings respond 

to changes in cost parameters and the volatility of the reserves processes.   Section 6 

looks at the cost savings of managing reserves by drift control rather than a buffer-stock 

strategy.  It also discusses other advantages of drift control and draws some conclusions. 

Most technical details are relegated to the appendix. 
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2.  Empirical Evidence 

To motivate the drift control model, we present two pieces of empirical evidence. 

The first concerns the dynamic behavior of reserve holdings, specifically the duration of 

reserve accumulation and depletion.  The second illustrates the association between 

changes in the direction of reserve drift and explicit decisions by the reserve authority to 

incur the fixed cost of switching the drift by changing policy. 

 To document the dynamics of international reserves, we examine the empirical 

properties of monthly international reserves for 145 countries over the sixteen-year 

period 1985:1 - 2001:6.5   Figure 2 previously illustrated the reserve dynamics for a few 

of these countries.   

A cursory examination of Figure 2 suggests that the dynamics are somewhat 

symmetrical with respect to the direction of reserve movements. The duration of the 

reserve build up and the rate of reserve accumulation are similar to the duration and rate 

of reserve depletion.  This pattern contrasts sharply with the asymmetric dynamics 

predicted by the BS model.  The BS model says the upward drift should be much larger 

than the downward drift, infinitely larger in fact, and consequently it should take zero 

time to accumulate reserves relative to the finite time for reserve depletion. 

 In order to document the degree of symmetry in the dynamics of international 

reserves, we compute for each reserve cycle of a country the number of months of 

upward drift (Nu), the months of downward drift (Nd), and the ratio  (Nu/Nd).6  Table 1 

                                                 
5 International reserves are defined as total reserves minus gold.  The data are from the 
IMF’s International Financial Statistics. 
 
6 For each country, we first identify the months in which reserves are at a local minimum 
or maximum.  In order to avoid short-term fluctuations and concentrate on long cycles, 
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displays averages and standard deviations of these variables for various country 

groupings of our 145-country sample. 

Table 1 shows that Nu/Nd is about two.  That is, on average it takes about twice 

as long to accumulate reserves as to deplete them over a cycle.  This result holds 

regardless of how countries are grouped.  When we look at industrial countries alone, 

developing countries alone, developing countries by geographic region, emerging 

markets, or country groups based on exchange-rate regime choice, Nu/Nd is about two. 7  

Recall that the BS model implies that the accumulation time is much shorter (technically 

zero) than the depletion time.  If anything, we find that the reserve cycle is asymmetric in 

the opposite direction—the accumulation time is longer than the depletion time.   

 To document evidence of policy changes at local peaks and troughs in 

international reserve holdings, we use a case study approach.  We find the association 

between policy changes and turning points is particularly pronounced for developed 

countries.  Moreover, these policy changes are motivated primarily or in part by concerns 

about reserve levels.  For developing countries, over the time period we study, the switch 

from an upward to a downward drift in reserves may also be triggered by an external 

shock rather than an explicit policy change.  In the aftermath of recent financial crises, 

some developing countries appear to have raised the upper bound for reserve holdings in 

                                                                                                                                                 
we smooth the country’s reserve data by taking the moving average over a twelve-month 
period. We define a local minimum (maximum) as a low (high) turning point. Nu is the 
number of months between a minimum level of reserves and the consecutive maximum.  
Nd is the number of months between a maximum and the next minimum. The results are 
similar when we use real reserves. 
 
7 Income and geographic classifications follow the IMF’s International Financial 

Statistics.  The emerging market classification comes from the International Finance 
Corporation.  Exchange-rate classifications are based on Reinhart and Rogoff (2004).   
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their desire to accumulate reserves. To appreciate the nature of this evidence, we present 

some case studies drawn from countries highlighted in Figure 2.   

Italy.  In the years 1985-2001, Italy’s reserve holdings reached local peaks in 

1990:8 and 1997:12, and local troughs in 1992:8 and 1999:3.  A few months before the 

first peak, the Italian government cited Italy’s strong balance of payments position and 

sizeable reserve holdings to justify its decision to adjust the lira’s value and adopt the 

narrower 2.25% band of fluctuation used by fellow members in the European Exchange-

Rate Mechanism (ERM).  Just after the trough in 1992:8, Italy expressed concern about 

declining reserves in the face of strong speculation against the lira. It dropped out of the 

ERM and let the lira float.  In the months prior to the 1997:12 reserve peak, the Italian 

authorities noted that a stronger lira and stronger reserve position had loosened the 

constraints on monetary and exchange-rate policies.  Italy rejoined the ERM and started a 

period of interest-rate reductions, including one in the month when reserves reached their 

local peak.  Reserves then started to fall, reaching a new low at the start of 1999 when 

Italy joined the European Monetary Union (EMU). 

Netherlands.  The Netherlands pursued a de facto monetary union with Germany 

from 1983 until it joined the EMU in 1999.   Reserve holdings in the Netherlands began 

to increase dramatically in 1992:8, when the Dutch authorities joined Germany in 

defending weak ERM currencies against a speculative attack.  Reserves continued to 

climb in the face of sustained tight monetary policy through 1994.  When reserves peaked 

in early 1995, the guilder was the strongest currency within the ERM.  The strong 

currency and reserve position relaxed the constraint on monetary policy.  The Dutch 

central bank followed Germany and cut interest rates, and later in 1995, the Dutch central 
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bank went solo and cut interest rates below their German equivalent for the first time 

since the guilder-DM peg was established as the key instrument of monetary policy in 

1983.   

United Kingdom.  Reserve holdings grew over the 1985-1988 period, reaching a 

local peak in 1988:12. After that, they declined somewhat but remained relatively stable 

into 2001.   In the year prior to the peak, the U.K. informally shadowed the ERM 

currencies.  When the U.S. stock market crashed in 1987:12, the U.K. initially intervened 

in foreign currency markets to keep the pound-DM rate stable.  In 1988, however, the 

authorities decided to allow the pound to appreciate against the DM.  The change in 

exchange-rate policy ended the period of reserve accumulation.  The policy change was 

motivated primarily by the desire to control inflation, but the growing stock of reserves 

contributed to unwelcome pressure on the money supply at a time when inflation control 

was needed. 

Significant changes in U.K. policy around local reserve peaks and troughs are also 

evident in longer time series data going back to 1960. British international reserve 

holdings (scaled by GDP or months of imports to eliminate the effects of inflation) 

reached local reserve peaks in 1971 and 1977 and reserve troughs in 1976 and 1984.  The 

peak in 1971 corresponded to the breakdown of the Bretton Woods arrangement. The 

massive accumulation of reserves by the British authorities as investors dumped their 

dollar holdings forced the U.K. to end its defense of the fixed exchange rate and float the 

pound in August, 1971.  In the months preceding the second local peak in 1977, the 

British again altered policy.  Worried that the increase in reserves was putting 

expansionary pressures on domestic money, the Bank of England abandoned its policy of 
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pegging the pound/dollar rate in July and switched to a basket peg.  But by the fall, the 

authorities felt they needed to take additional action to stem the capital inflows and rapid 

expansion of reserves that was pushing up the money supply.  At the end of October, 

1977, the Bank of England announced the pound would float for the time being.  Reserve 

accumulation ended.   The government repaid external debts in 1978, in some cases 

making early repayment, and those actions pushed down reserve holdings. 

Reserve lows in the 1970s also triggered changes in British policy.  In 1976, 

pound depreciation and declining reserves forced the UK to request a record $3.9 billion 

standby credit from the IMF on top of a standby credit made available by the Bank of 

International Settlements a few months earlier.   In January, 1977, an international 

agreement was reached on a special facility to shield British reserves from a further 

rundown of sterling holdings by foreign central banks and to help in the gradual reduction 

in the use of sterling as a reserve currency.   The next reserve low was the end of 1984.  

In January, 1985, the British authorities abandoned their exchange-rate policy of benign 

neglect.  They sought to strengthen the pound by tightening both monetary and fiscal 

policies.  The policies had the effect of reversing the reserve decline. 

Korea.   Reserve holdings increased in Korea from 1985-1996, reaching a local 

peak in 1996:6, just days before Thailand announced a devaluation and triggered the 

Asian financial crisis.  The switch to a downward trend in Korean reserves was triggered 

by an external shock rather than a domestic policy change. There was a significant 

change in policy around the date of the local trough in Korean reserves, however.  In the 

fall of 1997, turbulence in the Hong Kong market spilled over to Korea and led to Korean 

reserve losses as the authorities tried to defend the won against panic selling.  Finally, in 
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November, 1997, with reserves at a new low, the Korean authorities decided to float the 

won and seek a $57 billion standby agreement with the IMF. Since the end of 1997, there 

has been a rapid and massive build up of Korean reserve holdings, consistent with 

Korea’s stated goals of restoring investor confidence and protecting itself against future 

crises.   

Singapore.  Over the years 1985-2001, Singapore reserve holdings have displayed 

a continual positive drift.  This upward trend is particularly pronounced in the data when 

reserves are scaled by GDP or by months of imports.  There was a pause in the upward 

drift around the time of the Asian financial crisis, when the Singapore Monetary 

Authority responded to weakening aggregate demand conditions by adopting a wider 

band within which the Singapore dollar could float.  In the fall of 1999, the monetary 

authority narrowed the exchange-rate band to its pre-crisis width and reserves again 

began their upward drift. 

Brazil.  After a period of low and stable reserves, Brazil returned to a fixed 

exchange rate in the fall of 1991 and reserve holdings began to rise dramatically.  

Reserves continued to drift upwards until the end of 1998, interrupted by three sharp 

drops in reserves associated with contagion from external financial crises-- the Mexican 

crisis (December, 1994), the Asian crisis (July, 1997), and the Russian crisis (August, 

1998). After all three financial crises, Brazil reacted by increasing interest rates sharply to 

reduce capital flight and improve its reserve position.  After the Russian crisis, however, 

capital flight from Brazil continued and reserves fell further, causing the authorities to 

seek a large support package from the IMF in the fall of 1998.  The support package did 

not stem the pressure and Brazilian reserves continued to fall.  Worried about its reserve 
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position, Brazil increased the exchange-rate band on January 13, 1999.  When that did 

not stem the capital flight, it announced it would float the currency.  Since 2001, 

Brazilian reserves have trended upward, aided by periodic increases in domestic interest 

rates and external financing extended by the IMF to protect Brazil from adverse 

spillovers from Argentina’s crisis ($15 billion in 2001:9 and $30 billion in 2002:8).   

To summarize, a drift control model that associates changes in the direction of 

reserve drift with explicit decisions by the reserve authority to incur the cost of switching 

the drift by changing policy is strongly supported by the data.  A model that allows for 

finite periods of reserve accumulation and depletion and finite drift rates in both 

directions also finds support in the data.  

 

3. Describing the Drift Control Model 

Consider a reserve authority that holds foreign-exchange reserves R(t), where R(t) 

denotes the level of reserves at time t.  Reserves follow upward and downward Brownian 

motions.  The two reserve drifts are controlled by the reserve authority at a fixed cost per 

control as described below.  One drift is set at 0� ; the other at 1� , with .01 �� �  Without 

loss of generality, we assume that the drift control is of the (0, a, b) form, where a and b 

are trigger points set by the authority that initiate a change in the drift and 0� a<b<� . 

At time 0 the reserve level is R(0)=a and the drift is 0� . The drift is switched 

to 1� the first time reserves hit level b. The drift is controlled back to 0� as soon as 

reserves hit level a again, and so forth. Figure 3 illustrates the dynamics of R(t). When 

the reserves level is R � a , the drift is the high drift 0� ; when R � b , the drift is the low 

drift 1� . When b > R > a , the drift is 0�  ( 1� ) if R last hit the level a (b).  
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Even when the drift in reserves follows the higher rate 0� , a series of bad shocks 

can push reserves below a.  The reserve authority will not intervene, however, unless 

reserves are pushed below zero.  By choosing a high drift value 0�  and a high target value 

a, the reserve authority can reduce the probability that reserves will fall to zero, but the 

authority cannot eliminate the possibility altogether.  Consequently, we must consider 

how the reserve authority responds to this contingency. 

When a bad shock pushes reserves below zero, the reserve authority can either do 

nothing, in which case it incurs costs from having a negative reserve position for a period 

of time, or the reserve authority can intervene immediately to ensure non-negative 

reserve holdings, in which case it incurs a cost related to intervention.  Modeling the 

costs associated with a negative reserve position involves unnecessary complications, so 

we instead assume the reserve authority intervenes to prevent this outcome. Such 

intervention may take the form of obtaining additional reserves from the IMF or another 

country, for instance. In Section 5, we interpret this intervention cost as part of the cost of 

a financial crisis.  

 To account for the cost of intervention, we define the barrier 0 to be a reflecting 

barrier. That is, the reserves process R(t) is reflected (only from below) at level 0.   

The reflected process is defined as follows. Let }0:)({ 00 >= ttXX  be a 

Brownian motion (BM) with drift 0� , variance 2

0� , and initial value aX =)0(0 .  Define 

L(t) as  

                                       )](min,0min[)( 0
sXtL

ts�
�=                                         (1) 
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L(t) is the minimal amount of regulation (foreign reserves injection) necessary to keep 

the reserves level R(t) from falling below the boundary 0 up to time t.8  

Define the stopping time 0T  as the first time when the drift is controlled to 1� . It 

is defined as  

                                      { }.)()(:0min 0

0 btLtXtT �+>=                                         (2) 

Given 0T , let }:)({ 0

11
TttXX >=  be a BM with drift 1� , variance 2

1� , and 

bTX =)( 0

1 . The stopping time 1T  is then defined as the first time when the drift is 

controlled back to 0�  and is given by 

                                        }.)(:{min 1

010 atXTtTT �>=+                                           (3) 

The reserve level }0:)({ �ttR is a regenerative process with cycle 10 TT +  such that for 

10 TTt +� ,        

                               R(t) =
X

0
( t) + L(t)

X1(t)

� 

� 
� 
�                      

100

0

TTtT

Tt

+�<

�
                         (4) 

Note that {R(t) : 0 < t � T0}  is a one-sided regulated BM with parameters ),( 2

00 ��  and 

that {R(t) : T0 < t � T0 + T1}  is a BM with parameters ),( 2

11 �� ; also, R(0) = a  and 

R(T0) = b .  

                                                 
8 Technically, the diffusion process R is reflected from below by the local time L(t) 
which is a non-decreasing, adapted and non-anticipating process with respect to R. The 
general form of control is (A,a,b,B), where BbaA �<�  and A and B are reflecting 

barriers. Without loss of generality we assume A=0 and B .��  The latter assumption 

implies that 01 <� , otherwise R(t) does not have a well-defined stationary distribution. 

Given the cost structure assumed here, the optimality of the (A,a,b,B) is intuitively 
appealing. Formal proof is beyond the scope of this paper. See also Ata et al. (2005) on 
this point.  
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Having described the dynamics of drift control, we now model the costs 

associated with managing reserves. Policy is optimal when these costs are minimized. We 

identify three types of costs -- the cost of holding reserves, the cost of regulation, and the 

cost of controlling the drift.  

Let the cost of holding reserves be hR(t), where h is the cost of holding $1 of 

reserves per unit of time. The expected discounted cost of holding reserves is 

                                      A1 = hEa e
��t

R( t)dt
0

�

� ,                                                  (5) 

where �  denotes the discount rate and Ez (�) = E (� | R(0) = z). 

Since R(t) is a regenerative process, we can express 1A  in terms of a cycle. Let 

                                     )()( 0

0

T

a eE
��� �

=  

                            and 

                                    )()( 1

1

T

b eE
��� �= . 

We show in the appendix that 

                     A1 = h
Ea 0

T0� e��tR(t)dt + �0(�)Eb e��tR(t)dt0
T1�

1��0(�)�1(� )
.                      (6) 

Next assume that there is cost k per $1 of regulation at the boundary 0. There are 

an infinite and uncountable number of times that reserves hit the boundary level 0. To 

evaluate the regulation cost, we make use of L(t) defined above.  The expected 

discounted cost of regulation is 

                                            �
�

�=
0

2 )(tdLekEA
t

a

� .                                         (7) 

This cost can be expressed in terms of a cycle as 
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)()(1

)(

10

0
2

0

����

�

�
=

� �
T

t

a tdLekE

A .                                         (8) 

Finally, assume a cost �1 is incurred every time the drift is switched from 0�  to 

1� , and a cost 0�  is incurred when the drift is switched from 1�  to 0� . The expected 

discounted cost of controlling the drift is 

                                   
)()(1

)()()(

10

10001
3 ����

��������
�

+
=A .                                (9) 

Adding together the three costs, the total expected discounted cost of managing 

reserves is therefore 

                                                  321)( AAAC ++=� .                                  (10) 

This completes the description of the drift control model of international reserves.9 

 

4. Solving the Drift Control Model 

We now compute the total expected discounted cost, )(�C  in (10). To do so, we 

first need to derive explicit solutions for the functions )(��i , Ez e
��t

R(t)dt0
Ti� , i=0,1, and 

Ez e
��t

dL(t)0
T0�  that determine the A’s in (10).  We present these derivations in the 

appendix and provide here only a brief description of our methods.  

Let 0x  and 0y  be the two roots of the quadratic equation (� 0

2
/2)� 2 � � 0� � � = 0, 

so that 

                                                 
9 The long-run average cost per unit of time C can be derived from )(�C  as 

)(lim
0

��
�

CC +�
=  . 
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                                  (x0(� ),y0(� )) =
� 0 ± � 0

2 + 2�� 0
2

�0

2 .                               (11) 

 

For interest rate 0>� , both 0x  and 0y  are real numbers and 000 <yx . Using the 

definition of ),( 00 yx  in (11), the Appendix proves that  

                     �0 (�) =
y0e

� ax0 � x0e
�ay0

y0e
� bx0 � x0e

�by0
,                                                          (12a) 

                     �0(� ) � Ea e
� �t

dL( t)0
T0� =

e� ax0� by0 � e� ay0� bx0

x0e
� by0 � y0e

�bx0
,                           (12b) 

                Ea e
��t

R(t)dt =
[a �b�0(� ) +�0(� )]� + � 0(1��0(�))

� 20
T0� .              (12c) 

The analogous equations for 10 TtT �<  are, 10 

                        (x1(�), y1(� )) =
�1 ± �1

2 + 2��1
2

�1

2 ,                                          (13a) 

                        �1(� ) = e
�x1(b� a)

,                                                                     (13b) 

                         Eb e
� �t

R(t)dt =
[b� a�1(� )]� + �1(1��1(� ))

� 20
T1� .                   (13c) 

The appendix also presents the derivations of the steady-state density of 

international reserves R and their mean level.  Here we provide a brief description of the 

required calculations.   

We first compute the expected amount of regulation (foreign exchange injection) 

within one cycle, between time 0 and time 10 TT + .  We find that  

                                                 
10 The expressions derived for 10 TtT �<  are simpler than those for 00 Tt ��  because 

they do not have to account for an upper reflecting barrier. They can also be found in 
standard references to stochastic processes, such as Harrison (1985), section 3.2. 
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The expected levels of 0T  and 1T  are 
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0

)0(
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=
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and 

                                                      
1

1 �
ab

ET
�

= .                                                 (16) 

If the reserve authority optimally chooses a positive or negative value of � 0 , it is 

straightforward to see that (15) and trivially also (16) are positive.  In fact, (16) is the 

well-known formula for the first-passage time.  The expression in (15) takes into account 

the regulation at level 0 that shortens the expected time for reserves to move from the low 

trigger a to the higher level b.  

 If the reserve authority optimally chooses � 0 = 0 (recall that the possibility of 

choosing �1 = 0  is excluded; see footnote 7), we use l'Hospital rule to obtain the expected 

amount of regulation within one cycle and the expected level of 0T :  

                                           ab �=
�

)0(lim 0
00

�
�

,                                        (17) 

and 

                                           
2

0

22

0
00

lim
��

ab
ET

�
=

�
 .                                   (18) 
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Expressions (17) and (18) show that when the authority chooses a zero upward drift, the 

expected level of intervention when reserves fall below zero is (b-a), and the first-passage 

time is positive and finite.  

The steady-state probability density function of reserves, f(R), is given by the 

time-weighted average of the steady-state densities over the time periods ),0( 1T  and 

),( 21 TT : 

f (R) =

ET0

ET0 + ET1

exp(�x0 (0)(a� R))�exp(�x0(0)(b � R))

b� a
,0 � R � a

ET0

ET0 + ET1

1�exp(�x0(0)(b � R))

b � a
+

ET1

ET0 + ET1

1�exp(�x1(0)(R� a))

b� a
,a� R � b

ET1

ET0 + ET1

exp(�x1(0)(R� b)) �exp(�x1(0)(R� a))

b� a
,b � R

� 

� 

� 
� 
� 
� 

  

� 
� 
� 
� 

   (19) 

The mean of the steady-state density of reserves, denoted ER , is  

ER =
1

2
(a + b) �

ET0

ET0 + ET1

[
1

x0(0)
�

�0 (0)

b� a ��0(0)

a + b

2
]+

ET1

ET0 + ET1

1

x1(0)
.        (20) 

When the reserve authority optimally chooses a positive or negative value of� 0 , ER  is 

positive.  When � 0 � 0, it is straightforward to see that 

)0(/1)(/(2)/(lim 000
00

xbaab +=��
�

��
�

, so the bracketed expression in (20) vanishes and 

ER  is again positive and equal to: 

                                      lim
� 0 �0

ER =
1

2
(a + b) +

�0
2

�0

2
+ (a + b)�1

(
1

x1(0)
)                          (21) 

The mean level of reserves ER is therefore always positive, regardless of the chosen 

value for the upward drift. 

 

5. The Reserve Authority’s Response to Shocks 
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Having obtained analytic solutions for the cost functions and the steady-state 

mean level of international reserves, we can study how changes in model parameters 

affect variables of interest. The important model parameters are the various costs of 

managing reserves and the variances of the two stochastic processes for reserves.  The 

endogenous variables of interest are the minimum total cost of holding reserves, the four 

variables that the central bank controls (the two drifts and the two triggers), and the mean 

level of international reserves.   

 For each set of parameters, we find numerically the vector of drifts and triggers 

that minimizes the total discounted cost, and we compute the mean of the steady-state 

density of reserves that is implied by minimizing cost.  

We choose the following set of parameters as our baseline.  Cost parameters are 

),,,( 10 ��kh  = (0.01, 0.4, 0.1, 0.1), variances are ),( 2

1

2

0 ��  = (1, 1), and the interest rate is 

� =0.04.   We first examine the effects of changing cost parameters. 

 Table 2 shows the change in the minimum total discounted cost, )(�C , the two 

drifts and triggers, ),,,( 10 ba�� , and mean reserves, ER , when the cost of holding 

reserves  (h) varies between 0.01 and 0.35.  As expected, when holding costs increase, the 

total cost of managing reserves increases and the reserve authority ends up holding fewer 

reserves on average.   

We can also get some insight into how the reserve authority reduces its reserve 

holdings.  Table 2 shows that the reserve authority moderates the upward drift and makes 

the downward drift more negative.  Both adjustments prolong the time that reserves are 

close to the low trigger and shorten the time that reserves are at the high end.  At the 

same time, the reserve authority reduces the upper trigger monotonically, as expected.  It 
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allows the lower trigger “a” to stay relatively constant or even increase, a counterintuitive 

response. However, the dramatic reductions in the two drifts result in smaller average 

reserve holdings even when the lower trigger does not decrease.  

Interestingly, the decline in average reserve holdings is achieved largely by 

adjusting the drifts rather than the triggers. To see this in a simple way, consider the 

separate contributions of trigger changes and drift changes to the reduction in mean 

reserves from 3.60 to 0.73 in Table 2.  If both drifts remain at the values corresponding to 

h=0.01 (namely 1.333 and -0.312), while the triggers change to the values that 

correspond to h=0.35 (a=0.548 and b=2.064), average reserves fall from ER=3.60 to 

ER=2.565. Similarly, if both triggers stay at their initial levels (0.555 and 4.154) while 

the drifts adjust to the values that correspond to h=0.35 (� 0 = .012  and �1 = �116.3), 

average reserves fall much more, from ER=3.60 to ER=1.378. When the reserve 

authority sets both drifts and triggers, the drifts take on most of the burden of adjustment 

to higher holding costs.  

Table 3 illustrates what happens when the cost of regulation at the zero boundary 

(k) is allowed to vary.  Even more than in the previous case, we see that drifts, not 

triggers, take on most of the adjustment burden.  

 With a higher cost of regulation, the reserve authority tries to reduce the 

likelihood that reserves will fall below zero and generate this cost.  Intuitively, we might 

expect the central bank to react to higher regulation costs by raising the low trigger and 

perhaps raising the upper trigger as well. Instead, Table 3 shows that these two trigger 

levels actually tend to fall. The reason is that an increase in the upward drift and a more 
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gradual decline in the downward drift can push up reserves and prevent them from 

getting close to zero even when trigger level a gets closer to zero.   

When regulation costs rise, average reserve holdings increase. On net, the 

combination of lower triggers that decrease average reserves and higher drifts that 

increase reserves serve to increase mean reserves monotonically. 

The total cost of managing reserves )(�C  increases with higher regulation costs, 

but at a declining rate.  When regulation costs are low, increasing them at first raises total 

cost but after awhile has little additional effect.  That is because the probability of 

reserves hitting the zero boundary and generating a regulation cost becomes very small 

when the upward drift is increased.   

 The regulation cost (k) can proxy for some of the cost of a financial crisis. To see 

this, consider 0ET and 1ET  for various values of k.  When k=0.13, 0ET  = 38.988 and 

1ET =0.809. When k=0.45, 0ET =0.682 and 1ET =13.33.  When the expected cost of a 

crisis is small, the monetary authority allows reserves to wander around the lower trigger 

for a long time and permits reserves to return quickly from the upper trigger to the lower 

one. Such a strategy minimizes the cost of managing reserves.  The opposite holds true 

when the cost of a crisis is high. In this case, the monetary authority wants to build up 

reserves quickly and to keep reserves around the upper trigger for a long period of time. 

Such behavior accords with observed reserve dynamics after crises.  Moreover, it is 

impossible to capture this behavioral response using the more restrictive BS model. 

We can also get a sense of how large the expected cost of a crisis might be in our 

model.  The ratio k�0 (�) / ER  measures the expected cost of a crisis as a percentage of 

the mean level of reserves.  This ratio will be a function of all the parameters of the 
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model, not just k. For instance, suppose that k=0.4, the baseline level. For the parameter 

values that correspond to Table 2, the ratio will vary from 1% when h=0.01 to 80% when 

h=0.35. The higher ratio describes a case where holding reserves is costly, fewer reserves 

are held, and the expected cost of a crisis relative to reserves is large. For South Korea, an 

expected crisis costing between 1%-80% of its reserves in 2002 would amount to           

0.25% -18.5% of its GDP in 2002.  For China, a crisis costing up to 80% of its 2002 

reserves is equivalent to almost 19% of its 2002 GDP.  For Mexico, it is equivalent to 

6.8% of its 2002 GDP.   

The observation that it takes on average twice as long to accumulate reserves as to 

deplete them yields empirically realistic values for key parameters.  Equations (15) and 

(16) give 0 1 1 0 0/ ( (0)) /( ( ))ET ET b a b a� � �= � � � . For instance, if the accumulation-

depletion time ratio is in the range 0 12 / 1.5ET ET� � , then from Table 2 the cost of 

holding reserves is 5% 4.5%h� �  per dollar per unit of time and the expected cost of a 

crisis, 0 ( )k� � , is about 10% of the average reserve level ER . 

Tables 4 and 5 show what happens when there is an increase in the cost of 

changing the drift, perhaps because it becomes more difficult to modify the exchange-rate 

or interest-rate policies that influence the drift.   When changing the drift is more costly, 

the reserve authority tries to maintain the same drift for a longer period of time. The 

reserve authority does so by increasing the gap between the lower and upper triggers. The 

reserve authority also dampens the upward drift to extend the time until reserves hit their 

upper bound. Because the upward drift is smaller, the authority also increases the lower 

trigger to reduce the chance that reserves fall below zero and generate a regulation cost. 
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The mean level of reserve holdings and the total cost both increase monotonically with 

higher costs of changing drifts.  

Next consider the impact of increased uncertainty on optimal policy. Uncertainty 

is measured by the variances of the two Brownian motion processes for reserves.  Recall 

that in a BS model, more uncertainty increases “optimal” reserve holdings.  The reserve 

authority raises the upper target, the model’s measure of optimal reserves and the one 

variable under its control.11  The reason is straightforward.  Higher variance in the 

downward drift increases the probability that reserves will hit their lower trigger level 

and force the authority to pay the cost of restocking reserves.  To avoid paying this 

restocking cost too often, the policy maker raises the target level of reserves.  

 With drift control, the reserve authority must deal with two BM processes and 

hence two variances.  Tables 6 and 7 report results when the economy faces increased 

uncertainty due to increases in 2

0�  and 2

1� , respectively, while Table 8 reports the case 

where the two variances change by the same amount ( 2

1

2

0 �� = ). 

When drift control is followed, uncertainty is also costly.  An increase in either or 

both of the variances leads the authority to increase its average reserve holdings and face 

a monotonically increasing cost of managing them.   

While the increase in reserve holdings in the face of greater uncertainty mimics 

the prediction of the buffer stock model, the mechanism for acquiring reserves differs in 

the two models.  In the buffer stock model, reserves increase because the policy authority 

raises the target level of reserves, the upper trigger.  In the drift control model, the reserve 

                                                 
11 Frenkel and Jovanovic (1981) and others provide empirical support for this result. 
Flood and Marion (2002) show that this result may be a statistical artifact if reserves are 
not normally distributed. 
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authority has more instruments at its disposal and focuses more attention on changing the 

drifts in reserve holdings. 

Table 6 demonstrates exactly what happens under drift control.  As the variance 

of the upward drift increases, there is a higher probability that reserves will fall below 

zero and generate regulation costs. To offset this risk, the policy authority finds it optimal 

to increase the upward drift 0�  and moderate the downward drift.  Unlike the buffer stock 

model and intuition, the reserve authority does not always raise the triggers in response to 

more uncertainty.    

 In contrast to the results of Table 6, the results of Table 7 show that when the 

variance of the downward drift 2

1�  increases, it is optimal to accelerate the downward 

drift while moderating the upward drift.  Accelerating the downward drift lessens the 

time that reserves will follow a BM process with high variance. Moreover, adopting this 

policy will not increase the chance of incurring regulation costs because the reserve 

authority always switches to an upward drift when reserves reach level a.   The reserve 

authority also increases both triggers and the gap between them, as in the BS model.  The 

increase in the lower trigger, like the acceleration of the downward drift, allows the 

authority to reduce the time it must follow a policy of negative drift when that drift has a 

lot of variance.   

Table 8 illustrates what happens when the variances of the upward and downward 

BM processes increase by the same amount.  Again, more uncertainty increases average 

reserve holdings, and the reserve authority increases its holdings largely by adjusting the 

drifts rather than the triggers.  
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6.  Comparisons and Conclusion 

The buffer stock model of international reserves is a constrained version of drift 

control.  To see this, constrain the lower bound in the DC model to be zero.  Set the 

upward drift in reserves to approach infinity and set the downward drift at some 

exogenous negative value.  Ignore the cost of regulation because reserves never fall 

below zero; should they hit zero, they are restocked.  Set the cost of changing the drift at 

the upper bound at zero.  These constraints transform the drift control model into the 

buffer stock model.  Now reserves drift down at an exogenous rate.  When they reach the 

lower barrier of zero, they are adjusted immediately back to the upper trigger level b.  

The cost of adjustment when reserves hit the lower barrier is the cost of adjusting the drift 

upwards when reserves hit the low trigger.  The other cost of managing reserves, 

common to both the drift control and buffer stock models, is the opportunity cost of 

holding reserves. 

Because drift control gives the authority more policy instruments than a buffer 

stock strategy, it allows the authorities to manage reserves at less cost.  Table 9 shows the 

total cost of managing reserves when the reserve authority can optimize over four 

controls (Column 2).  The total cost is computed for various values of the holding cost 

and the baseline values for the rest of the exogenous parameters. The table also shows the 

total cost when the reserve authority can only optimize by choosing the upper trigger b , 

which is the restocked value of reserves under the buffer stock model (Column 3).  The 

fourth column of Table 9 shows the additional cost (in percentage terms) of managing 

reserves when the reserve authority must rely on one tool instead of four.  
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 We find that constraining the reserve authority increases the total cost of 

managing reserves.  Moreover, the extra cost is substantial.  For the range of holding 

costs shown in Table 9, the cost of managing reserves is 20-40% higher when the reserve 

authority has only one tool instead of four.  Not only does drift control better capture the 

dynamic behavior of reserve holdings, it allows a reserve authority to manage reserves at 

less total cost than more constrained strategies. 

 Column 5 of Table 9 shows the cost of managing reserves when the authority can 

optimize over two triggers, a and b.   Column 6 shows the extra cost involved in limiting 

the authority to two instruments instead of the four allowed with drift control. We 

observe here that even if the reserve authority is allowed to control both boundaries rather 

than just the upper one as in the BS model, the cost saving from drift control is still 

substantial.  Control over the drifts rather than control over the triggers is key to reducing 

the cost of managing reserves.  

Drift control has some other advantages as well.  It makes explicit how the 

reserve authority responds to crises. The DC model associates a crisis with a low reserve 

level and identifies an explicit cost that is incurred once reserves fall to this level. The 

reserves authority can reduce the probability of a crisis, but it cannot eliminate the chance 

of crisis altogether given the stochastic nature of the environment. When the cost of a 

crisis increases, the reserve authority responds by trying to reduce the probability of 

crisis.  It resets its instruments, both drifts and triggers.  As a result, the country may go 

for a very long period of time and many reserves cycles without a crisis.  Note that the 

story is quite different in the BS model.  There, a crisis occurs on a regular basis, indeed 

every time reserves hit the lower trigger (corresponding to our level a).  Raising the upper 
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trigger can reduce the frequency with which reserves hit the lower trigger, but they will 

still hit that lower trigger in every reserve cycle. 

The drift control model is compatible with long periods of reserve accumulation 

without intervention by the reserve authority. The average rate of reserve change is under 

the control of the reserve authority. Depending on cost parameters, the authority might 

choose a relatively small positive drift and high upper trigger.  This choice would allow a 

long period of reserve accumulation.  Such an outcome is optimal if holding reserves is 

not very costly but reversing course is relatively expensive. 

We close the paper with an overview of several issues left for further research.  

First, our drift control strategy for managing international reserves could be embedded in 

a macroeconomic model where the government uses a set of tools to achieve multiple 

objectives.  Such a macroeconomic model would make explicit the linkages between 

exchange-rate policy and the management of international reserves.  For example, it 

might specify how exchange-rate policy endogenously affects the drifts.  A macro model 

could also help identify any range of inaction over which the policy maker puts reserves 

policy on automatic pilot while it focuses on other priorities.   

Second, even without a full-fledged macroeconomic model, it would be 

interesting to investigate alternative types of drift control policies. For example, 

international reserves might follow a drift that has both a fixed component and a policy-

influenced component, where the cost of changing the drift depends on the current values 

of the drift and the reserve level.12  When reserves are relatively low, it may be more 

costly to turn them around.   Consequently, the reserve authority may wish to make more 

                                                 
12 We thank Avinash Dixit for this suggestion. 
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frequent and increasingly severe adjustments in the drift as reserves move towards the 

lower barrier.   

Third, the drift control methodology can be applied to other economic problems. 

For example, it would be useful to explore the implications of having a firm adopt a drift 

control strategy for capital accumulation when the rate of capital depreciation can be 

regulated. Another straightforward application is to forestry and natural resources in 

general where the rate of depletion is under control. 
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Appendix 

 

I.  Computing the total expected cost of managing reserves 

Given that R(t) is a regenerative process with a cycle T0 + T1, we can write the 

total expected discounted cost of managing reserves C(� )  as, 

(A.1)
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0

10

0

0

0
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Grouping theC(� )’s on the left-hand side of (A.1) gives the expression for the total cost, 

equation (10) in the text.  What remains on the right-hand-side of (A.1) is then the sum of 

the three costs associated with reserve management—the holding cost, the regulation 

cost, and the cost of changing the drifts.  These three costs are called A1, A2,and A3 , 

respectively, and are equations (6), (8), and (9) in the text.  

To compute the functional forms of �i(� ), Ez e
��t

R(t)dt
0

Ti

� , i = 0,1, and 

�0(� ) = Ea e
� �t

dL(t)
0

T0

� , we generalize the technique used in Bar-Ilan et al. (2004), Perry 

and Stadje (1999), and Perry (1997). The main tool of our analysis is a martingale M(t). It 

follows from Ito’s Lemma (see chapter 5 of Chung and Williams (1990)) that if U is a 

BM with exponent !(�) = (1/2)� 2� 2 � �� , V = V ( t) : t � 0{ } is an adapted process of 

bounded variation on finite intervals, and W = W ( t) : t � 0{ } satisfies W (t) = U (t) +V (t) , 

then 

(A.2) M(t) = !(� ) e
��W (s)

ds+
0

t

� e
��W (0) �e

��W ( t ) �� e
��W (s)

dV (s)
0

t

�  



 33  

 

is a martingale.  We use this martingale as follows. Since R(t) : t � 0{ } is a regenerative 

process with cycle T0 + T1, we divide the cycle into two parts and analyze each of them 

separately. The first part is R(t) : t � T0{ }, which is one sided reflected BM (RBM) with 

R(0) = a,  R(T0) = b,  drift � 0 " (��,�)  and variance �0

2
> 0. The second part is 

R(t) : T0 < t � T1{ } which is regular BM with R(T0) = b,  R(T0 + T1) = a,  drift �1 < 0  and 

variance �1

2
> 0. 

To use the martingale (A.2) on the first part of the cycle, set 

!(�) =!0 (� ) = (1/2)�0

2� 2 � � 0� , U( t) = X
0
( t) , V( t) = L( t) + (� /�)t , and 

V( t) = L( t) + (� /�)t , and W (t) = R( t) + (� /�)t . Then 

(A.3)  M0(t) = !0(�) e
��R (s)��s

ds + e
�#a �e

��R ( t )��t �� e
��R (s)��s

d(L(s) +
�
�0

t

�
0

t

� s) 

is a martingale. Since R(t) : t � T0{ } is bounded in a,b[ ] , it is straightforward to see that 

the conditions hold for Doob’s optional sampling theorem (Karlin and Taylor (1974)). By 

setting Ea M 0(0) = Ea M 0(T0 ) , we obtain 

(A.4)   !0(� )Ea e
��R (s)� �s

ds = �e
�#a

+ Eae
��R (T0 )��T0 +�Ea e

��R (s)��s
d(L(s) +

�
�0

T0

�
0

T0

� s) . 

Since L(t) increases only when R(t)=0, we have 

e
��R(s)� �s

dL(s) = e
��s

dL(s)
0

T0

�
0

T0

� . 

Rearranging terms in (A.4) and using d(L(s) + (� /�)s) = dL(s) + (� /� )ds  and 

R(T0) = b  yields  
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            (A.5) 
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with �0 (�)  and �0(� )defined earlier as �0 (�) = Ea(e
��T0 )  and �0(� ) = Ea e

� �s
dL(s)

0

T0

� . 

 Let x0  and y0  be the positive and negative roots, respectively, of the quadratic 

equation !0(� ) �� = (�0

2
/2)� 2 �� 0� �� = 0 , so that 

       (A.6)       (x0(� ), y0 (�)) =
� 0 ± � 0

2 + 2��0
2

� 0

2 .  

Equation (A.6) is equation (11), section 4. Substituting � = x0 (�)  and � = y0 (�)  into 

equation (A.5) makes the left-hand-side equal to zero. Equation (A.5) therefore yields 

two equations in the two unknowns, �0 (�)  and �0(� ) :       

            (A.7)         �0 (�) =
y0e

� ax0 � x0e
�ay0

y0e
� bx0 � x0e

�by0
, 

 

      (A.8)         �0(� ) =
e�ax0 �by0 �e�ay0 �bx0

x0e
�by0 � y0e

� bx0
. 

Equations (A.7) and (A.8) are equations (12a) and (12b) in section 4.  

Now substitute equations (A.7) and (A.8) into (A.5), divide both sides by 

� �!0(� ), take the derivative with respect to �  and set � = 0 . This yields 

(A.9)    Ea e
��t

R(t)dt =
[a �b�0(� ) +�0(� )]� + � 0(1��0(�))

� 20
T0� , 

which is equation (12c). 

The solution technique for the second part of the cycle is similar and yields 

equations (13a)-(13c).  
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II. Computing the steady-state density of reserves 

 The steady-state density of reserves f (R)  is obtained as follows. Let f
0
(R)  

[ f
1
(R)] be the conditional steady-state densities of R given that the second [first] part of 

each cycle is deleted. Then, f (R)  is a weighted average, such that 

(A.10)   f (R) =
ET0

ET 0+ET1

f
0
(R) +

ET1

ET 0+ET1

f
1
(R) .   

In terms of Laplace Transforms, denoted LT, equation (A.10) is 

(A.11)    ˜ f (R) =
ET0

ET 0+ET1

˜ f 
0
(R) +

ET1

ET 0+ET1

˜ f 
1
(R) , 

where ˜ f (R) , ˜ f 
0
(R) , and ˜ f 

1
(R)  are the LTs of f (R) , f

0
(R) , and f

1
(R) , respectively. 

To compute the LT ˜ f 
0
(R) , let � = 0  in equation (A.5) and divide both sides by 

ET0!0 (� ). Since �0 (0) =1, this yields  

(A.12)  
Ea e��R (s)ds

0

T0

�

ET0

=
�e��a + e��b +��0 (0)

ET0!0(�)
. 

By renewal theory the left-hand-side of (A.12) is ˜ f 
0
(R) .  The solution for �0(0) = EL(T0)  

can be computed from equation (12) and is given by equation (14).  Finally, by letting 

� � 0  in equation (A.12) and using l’Hospital rule we get 

(A.13)   ET0 =
b� a ��0(0)

� 0

,      

which is equation (15) in the text. Thus, 

(A.14)   ˜ f 
0
(R) =

�e��a + e��b +��0(0)

(1/2)� 2�0

2 ��� 0

� 0

b� a ��0 (0)
, 

where �0(0)  is in equation (14). 
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In a similar manner we get, 

(A.15)     ET1 =
b � a

�1

, 

and 

(A.16)     ˜ f 
1
(R) =

e��a �e��b

(1/2)� 2�1

2
+� �1

�1

b� a
. 

Substituting (A.14) and (A.16) into (A.11) gives ˜ f (R) , the Laplace transform of the 

steady-state density of reserve holdings. 
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 Figure 1: Buffer stock model of international reserves 
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Figure 2: Reserves in Individual Countries 

Note: The vertical axis measures reserves in millions of dollars; the horizontal axis is the 
year. 
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Developing Variable All 

Countries 

(145 

countries) 

Industrial 

(22) 
All 

(123) 

Africa 

(42) 

Asia 

(24) 

Middle 

East 

(12) 

Eastern 

Europe 

(16) 

South/Central 

America (29) 

Nu/Nd 2.02 

(1.92) 

1.88 

(1.62) 

2.05 

(1.98) 

1.64 

(1.51) 

2.44 

(2.31) 

1.84 

(1.45) 

2.03 

(1.44) 

2.46 

(2.55) 

Nu 31.30 

(23.04) 

28.49 

(17.28) 

31.93 

(24.14) 

27.06 

(19.14) 

34.82 

(29.35) 

29.52 

(19.83) 

33.91 

(22.46) 

36.81 

(27.50) 

Nd 20.68 

(13.69) 

20.53 

(13.76) 

20.71 

(13.69) 

20.76 

(12.20) 

20.25 

(15.48) 

20.73 

(12.32) 

19.37 

(18.25) 

21.44 

(13.11) 

 

 

Variable Fixed/Managed 

Exchange Rate 

(126 countries) 

Floating 

Exchange Rate 

(19 countries) 

Emerging 

Markets 

(32 

countries) 

Nu/Nd 1.97 

(1.83) 

2.34 

(2.47) 

2.67 

(2.32) 

Nu 31.57 

(23.67) 

28.77 

(16.89) 

40.69 

(30.92) 

Nd 20.81 

(13.14) 

19.96 

(17.20) 

19.66 

(15.22) 

 

Table 1: Reserve Accumulation Times, Depletion Times and Drifts  

 

Nu (Nd) is the number of months of reserve accumulation (depletion). 
Numbers are averages. Standard deviations in parentheses.
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h )(�C  a b 0�  
1�  ER 

0.01 1.313506 0.555081 4.154258 1.333219 -0.31155 3.602403 

0.03 2.648767 0.551258 3.327752 0.883108 -0.60606 2.287094 

0.05 3.64313 0.586882 3.10086 0.649506 -0.90957 1.832378 

0.07 4.475442 0.607702 2.958336 0.515916 -1.25482 1.574156 

0.09 5.206216 0.617067 2.842381 0.42715 -1.65371 1.401343 

0.11 5.865611 0.619228 2.741223 0.361914 -2.11799 1.275296 

0.13 6.471318 0.617241 2.651373 0.310345 -2.6638 1.178197 

0.15 7.034759 0.612869 2.570907 0.267492 -3.31425 1.10046 

0.17 7.563808 0.607176 2.498414 0.230548 -4.10198 1.036425 

0.19 8.064162 0.600802 2.432766 0.197827 -5.076 0.982496 

0.21 8.5401 0.594108 2.37298 0.168272 -6.31045 0.936272 

0.23 8.994931 0.587284 2.318242 0.14118 -7.92363 0.896081 

0.25 9.431274 0.58062 2.267981 0.116012 -10.1373 0.860712 

0.27 9.85125 0.573816 2.221394 0.092492 -13.297 0.829271 

0.29 10.2566 0.567563 2.178658 0.069898 -18.3144 0.8011 

0.31 10.64878 0.560327 2.137212 0.049302 -26.4484 0.775529 

0.33 11.02904 0.551063 2.095604 0.031295 -35.9628 0.752648 

0.35 11.39833 0.547617 2.0644 0.011598 -116.316 0.731755 

 

                      Table 2: Changing the Holding Cost 
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k )(�C  a b 0�  
1�  ER 

0.05 0.736138 1.377287 6.769530 -0.203998 -452.420 1.696641 

0.09 0.922713 1.658907 6.939021 -0.05759 -141.785 2.229923 

0.13 1.043024 1.783878 6.990555 0.033466 -6.43556 2.599382 

0.17 1.127463 1.746435 6.764256 0.115699 -1.82395 2.883464 

0.21 1.188722 1.637038 6.444516 0.19951 -1.06604 3.095734 

0.25 1.233721 1.470708 6.044453 0.296957 -0.74281 3.25319 

0.29 1.266542 1.257575 5.574653 0.424729 -0.5586 3.369837 

0.33 1.289852 1.01199 5.058713 0.611726 -0.43917 3.460453 

0.37 1.305642 0.753819 4.537286 0.917873 -0.35752 3.540625 

0.41 1.315465 0.485672 4.02507 1.554897 -0.29794 3.624714 

0.45 1.320197 0.169084 3.463841 4.803835 -0.24713 3.736782 

0.49 1.320740 0.006374 3.189463 134.7241 -0.22599 3.806718 

0.53 1.320760 0.003621 3.185305 245.9576 -0.22575 3.807264 

0.57 1.320778 0.002664 3.183578 343.6737 -0.22544 3.809589 

0.61 1.320795 0.002893 3.187182 334.8247 -0.22581 3.807766 

 

 

                     Table 3: Changing the Regulation Cost 
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0�  )(�C  a b 0�  
1�  ER 

0.01 0.599299 0.003891 1.564982 365.4228 -0.59974 1.61677 

0.02 1.143899 0.003284 2.74154 258.0055 -0.28971 3.09634 

0.03 1.170082 0.003261 2.807142 266.5706 -0.2796 3.191611 

0.04 1.194831 0.003941 2.870825 215.1837 -0.27005 3.286541 

0.05 1.218303 0.006254 2.937629 133.304 -0.26134 3.381418 

0.06 1.240602 0.041523 3.0502 19.60156 -0.25833 3.455964 

0.07 1.261217 0.19555 3.363594 4.055119 -0.27344 3.486666 

0.08 1.280057 0.333051 3.654933 2.324766 -0.2877 3.522475 

0.09 1.297416 0.450731 3.915213 1.678788 -0.30019 3.561851 

0.1 1.313506 0.555081 4.154258 1.333219 -0.31155 3.602403 

0.11 1.328485 0.650401 4.378567 1.113395 -0.32226 3.642936 

0.12 1.342476 0.739244 4.591927 0.958889 -0.33261 3.682894 

0.13 1.355579 0.822969 4.796218 0.843336 -0.34271 3.722026 

0.14 1.36788 0.902324 4.992441 0.753218 -0.35261 3.760232 

0.15 1.379451 0.977681 5.181007 0.680836 -0.36229 3.797466 

0.16 1.390356 1.049251 5.362166 0.6214 -0.37171 3.833707 

0.17 1.400654 1.117196 5.536107 0.571726 -0.38084 3.868947 

0.18 1.410394 1.181668 5.70309 0.529605 -0.38965 3.90319 

0.19 1.419623 1.242814 5.863346 0.493449 -0.3981 3.93645 

0.2 1.428381 1.300804 6.01721 0.462077 -0.40619 3.968745 

0.25 1.466267 1.54953 6.702453 0.351918 -0.44099 4.116761 

0.3 1.496573 1.744439 7.277024 0.285142 -0.46713 4.24557 

0.4 1.54217 2.030873 8.209021 0.206881 -0.49948 4.461602 

 

 

Table 4: Changing the Cost of Switching to the Upward Drift 
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1�  )(�C  a b 0�  
1�  ER 

0.01 1.026131 0.002595 2.678959 355.1233 -0.30212 2.994342 

0.02 1.064004 0.003269 2.733289 319.9431 -0.28823 3.101423 

0.03 1.100158 0.002747 2.805398 321.5173 -0.27947 3.191639 

0.04 1.134912 0.003224 2.868998 263.1136 -0.26986 3.287013 

0.05 1.168385 0.00409 2.929771 202.9626 -0.26116 3.378968 

0.06 1.200689 0.004394 2.987028 187.0929 -0.25296 3.469631 

0.07 1.231985 0.007342 3.046311 108.7138 -0.24602 3.554626 

0.08 1.262116 0.107192 3.263098 7.287499 -0.25242 3.597954 

0.09 1.289257 0.350309 3.733932 2.170768 -0.28227 3.589696 

0.1 1.313506 0.555081 4.154258 1.333219 -0.31155 3.602403 

0.11 1.335341 0.741699 4.553198 0.970035 -0.34275 3.625442 

0.12 1.355053 0.918645 4.941292 0.760085 -0.37738 3.654847 

0.13 1.372872 1.085779 5.315226 0.622976 -0.41562 3.688628 

0.14 1.389019 1.240569 5.668642 0.527486 -0.45704 3.724989 

0.15 1.403701 1.381515 5.997981 0.457921 -0.50116 3.762353 

0.16 1.417111 1.508669 6.302984 0.405315 -0.54778 3.799597 

0.17 1.429416 1.623056 6.585374 0.364236 -0.59692 3.836057 

0.18 1.440757 1.726055 6.847576 0.331265 -0.64881 3.871395 

0.19 1.451253 1.819081 7.092093 0.304181 -0.70382 3.905478 

0.2 1.461003 1.903429 7.321193 0.281494 -0.76241 3.938292 

0.25 1.501101 2.229149 8.294987 0.206595 -1.1341 4.085566 

0.3 1.531087 2.451353 9.079478 0.163818 -1.75904 4.211884 

0.4 1.573301 2.735714 10.33562 0.115385 -8.86599 4.427501 

 

 

Table 5: Changing the Cost of Switching to the Downward Drift 
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2

0�  )(�C  a b 0�  
1�  ER 

0.1 0.508982 0.907681 3.568472 0.02739 -5.31079 1.472981 

0.15 0.611103 1.065724 4.047864 0.043249 -3.70752 1.727699 

0.2 0.694437 1.187849 4.420716 0.059336 -2.88971 1.936353 

0.25 0.765907 1.286012 4.724436 0.07575 -2.37958 2.115957 

0.3 0.828998 1.365943 4.97717 0.092637 -2.02291 2.275096 

0.35 0.885745 1.430712 5.18894 0.110177 -1.75459 2.418781 

0.4 0.937446 1.481989 5.365576 0.128591 -1.54215 2.550204 

0.45 0.984975 1.520569 5.510389 0.148157 -1.36743 2.671522 

0.5 1.028948 1.54661 5.624948 0.169241 -1.21944 2.784236 

0.55 1.0698 1.559713 5.709424 0.192339 -1.09105 2.889411 

0.6 1.107839 1.558906 5.762672 0.218153 -0.97739 2.987793 

0.65 1.143273 1.542552 5.7821 0.247719 -0.87496 3.079883 

0.7 1.176219 1.508142 5.763314 0.282644 -0.78115 3.165978 

0.75 1.206705 1.451926 5.699434 0.325589 -0.69389 3.246227 

0.8 1.234659 1.368334 5.579938 0.381305 -0.61146 3.320713 

0.85 1.259871 1.249119 5.388967 0.459159 -0.53242 3.389746 

0.9 1.281935 1.082556 5.103663 0.58017 -0.45574 3.454737 

0.95 1.300161 0.854886 4.697526 0.800561 -0.38151 3.520778 

1 1.313506 0.555081 4.154258 1.333219 -0.31155 3.602403 

1.05 1.320368 0.138074 3.41563 5.736926 -0.24327 3.745834 

1.1 1.32077 0.00516 3.187924 161.9714 -0.22607 3.805137 

1.15 1.320795 0.003162 3.183969 279.3701 -0.22571 3.80697 

1.2 1.320873 0.00371 3.185023 245.0373 -0.22568 3.807815 

1.25 1.320826 0.002065 3.182677 455.1487 -0.22549 3.808625 

1.3 1.320793 0.001275 3.181149 770.8404 -0.22542 3.808632 

 

 

Table 6:  Changing Uncertainty About the Upward Drift 
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2

1�  )(�C  a b 0�  
1�  ER 

0.2 0.791572 0.000802 1.773077 728.1559 -0.06131 2.517728 

0.4 0.984934 0.000805 2.286547 765.5151 -0.10959 2.968429 

0.6 1.120976 0.001914 2.648898 376.6372 -0.15127 3.307838 

0.8 1.229183 0.001417 2.937933 515.4386 -0.18993 3.574981 

1 1.313506 0.555081 4.154258 1.333219 -0.31155 3.602403 

1.2 1.343857 1.255971 5.575442 0.560803 -0.56559 3.609333 

1.4 1.35673 1.550765 6.183123 0.439198 -0.80073 3.631987 

1.6 1.363989 1.711605 6.518393 0.389637 -1.02588 3.644924 

1.8 1.368694 1.813843 6.733263 0.362468 -1.24638 3.652801 

2 1.372007 1.884924 6.883542 0.345232 -1.46438 3.657992 

2.2 1.37447 1.937352 6.994885 0.333294 -1.68089 3.661635 

2.4 1.376375 1.97768 7.080823 0.324524 -1.89646 3.664314 

2.6 1.377894 2.009694 7.149229 0.317804 -2.11138 3.666359 

2.8 1.379134 2.035738 7.205 0.312488 -2.32585 3.667966 

3 1.380166 2.057353 7.251368 0.308176 -2.53998 3.669261 

3.2 1.381038 2.075579 7.290528 0.304607 -2.75384 3.670323 

3.4 1.381785 2.091162 7.324054 0.301603 -2.96751 3.67121 

3.6 1.382431 2.104639 7.353081 0.299041 -3.18103 3.671963 

3.8 1.382997 2.116411 7.378459 0.296829 -3.39443 3.672606 

4 1.383496 2.126783 7.400837 0.2949 -3.6077 3.673163 

 

 

Table 7: Changing Uncertainty About the Downward Drift
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2

0� = 2

1�  )(�C  a b 0�  
1�  ER 

0.1 0.507869 0.857556 3.358752 0.031603 -0.4592 1.468928 

0.2 0.690184 1.039406 3.96328 0.076131 -0.40984 1.928419 

0.3 0.820606 1.104439 4.279347 0.130227 -0.3881 2.259183 

0.4 0.924515 1.104479 4.442876 0.196679 -0.37175 2.523933 

0.5 1.01157 1.060338 4.505302 0.28008 -0.35722 2.747854 

0.6 1.086676 0.984965 4.496483 0.3871 -0.34407 2.94488 

0.7 1.152751 0.88925 4.440182 0.526974 -0.33273 3.124008 

0.8 1.211729 0.782568 4.356761 0.712831 -0.32366 3.291114 

0.9 1.26498 0.670826 4.25996 0.966505 -0.31683 3.449784 

1.0 1.313506 0.555081 4.154258 1.333219 -0.31155 3.602403 

1.1 1.358044 0.432346 4.036342 1.92675 -0.30679 3.751324 

1.2 1.39913 0.298025 3.89961 3.111835 -0.30161 3.899437 

1.3 1.437157 0.148416 3.73875 6.893655 -0.29547 4.05008 

1.4 1.472437 0.015501 3.607502 72.099 -0.29292 4.191532 

1.5 1.505745 0.006929 3.682071 175.6072 -0.30706 4.282736 

1.6 1.537589 0.004407 3.761888 296.4685 -0.32181 4.366385 

1.7 1.568148 0.00441 3.843831 317.7739 -0.33675 4.44554 

 

                         Table 8:  Changing Uncertainty About Both Drifts 
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 (1)            (2)                  (3)                        (4)                           (5)                      (6)    

h C(a,b, 0� , 1� ) C(b) 

[C(b)-

C(a,b, 0� , 1� )/C(b)]*100    C(a,b) 

[C(a,b)-

C(a,b, 0� , 1� ) / 

C(a,b)]*100 

0.001 0.327528556 0.556186288 41.11171688 0.5542431 40.90524956 

0.002 0.484400911 0.77680926 37.6422327 0.7728065 37.31924774 

0.003 0.617985611 0.950129125 34.95772372 0.944028 34.53736124 

0.004 0.73795446 1.098764601 32.83780172 1.0905406 32.33131822 

0.005 0.848575885 1.231566445 31.09783982 1.2212018 30.51305035 

0.006 0.952214013 1.353096379 29.62703709 1.340577 28.9698406 

0.007 1.050350938 1.466072481 28.35613848 1.4513869 27.63122308 

0.008 1.143992771 1.572269385 27.23939153 1.5554077 26.4506166 

0.009 1.233862851 1.672921616 26.24502908 1.6538753 25.39565366 

0.01 1.320501711 1.768929059 25.35021662 1.7476905 24.44304782 

0.011 1.404327763 1.860971675 24.53792919 1.8375342 23.57542204 

0.012 1.485673514 1.949578114 23.79512759 1.9239356 22.77945576 

0.013 1.56480701 2.035169042 23.11169354 2.0073158 22.04480242 

0.014 1.64195239 2.118085711 22.47941707 2.0880167 21.36306072 

0.015 1.717291453 2.198609485 21.8919292 2.1663198 20.72770477 

0.016 1.790982836 2.276975595 21.34378426 2.2424609 20.13315223 

0.017 1.863164601 2.353383086 20.83037342 2.3166392 19.57467528 

0.018 1.933950416 2.42800216 20.3480768 2.3890252 19.04855462 

0.019 2.003440828 2.500979707 19.89375912 2.459766 18.55156698 

0.02 2.07172732 2.572443547 19.46461479 2.5289895 18.0808271 

0.021 2.138887778 2.642505726 19.05834839 2.5968082 17.63397089 

 

 

             Table 9: The Expected Discounted Cost of Managing Reserves  

 


